基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为识别固体燃料气化过程参数出现的异常模式(失稳),构建一种基于蜜蜂算法-径向基函数神经网络(BA-RBFNN)控制图模式识别的气化过程参数失稳监控模型,对气化过程参数进行监控.该监控模型主要包括特征描述、特征选择、分类器和训练方法4个模块.选择形状特征和统计特征对气化过程参数进行描述,运用关联规则算法(AR)选择最佳特征集合,选择径向基函数神经网络(RBFNN)作为分类器,采用蜜蜂算法(BA)作为模型的训练方法.为检测模型性能,用模拟数据和气化炉现场数据分别对模型进行测试,并与传统方法对比.结果表明,该模型对气化过程参数出现的异常模式具有更好的识别监控效果.
推荐文章
基于遗传优化的PCA-SVM控制图模式识别
控制图
模式识别
遗传优化
主元分析
支持向量机
基于融合特征与支持向量机的控制图模式识别
控制图模式识别
特征提取
原始特征
形状特征
特征融合
支持向量机
基于模糊模式识别的超圆神经网络模型
模糊集合论
数据挖掘
模糊模式识别
超圆神经网络
基于模式识别的装备故障诊断方法
复杂装备
模式识别
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BA-RBFNN控制图模式识别的气化过程参数失稳监控模型
来源期刊 河南理工大学学报(自然科学版) 学科
关键词 气化过程参数 模式识别 径向基函数神经网络 蜜蜂算法 关联规则算法
年,卷(期) 2021,(4) 所属期刊栏目 安全·矿业
研究方向 页码范围 38-47
页数 10页 分类号 F253.3|X937
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (27)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
气化过程参数
模式识别
径向基函数神经网络
蜜蜂算法
关联规则算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南理工大学学报(自然科学版)
双月刊
1673-9787
41-1384/N
16开
河南省焦作市世纪大道2001号
3891
1981
chi
出版文献量(篇)
3451
总下载数(次)
5
总被引数(次)
20072
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导