基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社会网络中海量、无序且碎片化的新闻数据,使得人们无法从细粒度感知新闻事件,更无法多视角把握事件发展脉络.为了解决这个问题,该文提出基于命名实体敏感的分层新闻故事线生成方法,在无监督的情况下,充分利用新闻信息构造层次化、多视点的事件脉络.该方法主要通过以下3个步骤实现:①基于事件主题信息与隐式语义信息相结合的方法检测事件;②基于多维语义信息的社区检测算法划分主题事件的子事件;③基于多视点信息构造事件发展的脉络.在真实数据集上的实验结果表明,该方法在三个步骤比基线方法均有提高,其中在构造事件发展脉络阶段,该方法在理解性、概括性和准确性指标上分别高出0.44、0.11和0.50.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
一种基于命名实体识别的需求跟踪方法
需求跟踪
命名实体识别
语义聚类
自然语言处理
权重计算
基于中文维基百科的命名实体消歧方法
命名实体消歧
词义消歧
中文维基百科
中文信息处理
基于条件随机场的网络评论与事件中命名实体匹配研究
条件随机场
命名实体
变体形式
综合相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于命名实体敏感的分层新闻故事线生成方法
来源期刊 中文信息学报 学科 工学
关键词 事件演变 故事线 聚类 主题模型 社区发现
年,卷(期) 2021,(1) 所属期刊栏目 情感分析与社会计算
研究方向 页码范围 113-124
页数 12页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (1)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
事件演变
故事线
聚类
主题模型
社区发现
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导