基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高人体动作识别准确率,改进原有3D CNN网络模型以获得更为丰富细致的人体动作特征,并通过对比实验为模型输入优选出识别效果最好的特征组合.该模型主要包括5个卷积层、3个下采样层和2个全连接层,二次卷积操作有利于提取到更为细致的特征,BN算法和dropout层用以防止模型过拟合,空间金字塔池化技术可以使网络能够处理任何分辨率的图像,提高模型适用性.通过在KTH和UCF101数据集上做识别测试实验,特征组合"ViBe二值图+光流图+三帧差分图"作为模型输入可以得到较高的识别准确率,尤其针对背景较复杂、动作类别多且差异性较小的数据集提高明显,具有较好的实际应用价值.
推荐文章
基于3D CNN的人体动作识别研究
人体动作识别
三维卷积神经网络
特征提取
模型训练
深度学习
实验对比
基于3D CNN的人体动作识别研究
人体动作识别
三维卷积神经网络
特征提取
模型训练
深度学习
实验对比
基于混合特征的人体动作识别改进算法
动作识别
剪影特征
光流特征
留一法
人体动作识别中基于HTM架构的时空特征提取方法
人体动作识别
时空特征提取
层次时间记忆
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 3D CNN人体动作识别中的特征组合优选
来源期刊 河北工业大学学报 学科
关键词 深度学习 人体动作识别 三维卷积神经网络 BN算法 dropout技术 空间金字塔池化
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 44-50
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.14081/j.cnki.hgdxb.2021.01.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (98)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(7)
  • 参考文献(5)
  • 二级参考文献(2)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
人体动作识别
三维卷积神经网络
BN算法
dropout技术
空间金字塔池化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业大学学报
双月刊
1007-2373
13-1208/T
大16开
天津市北辰区双口镇西平道5340号
1917
chi
出版文献量(篇)
3202
总下载数(次)
10
总被引数(次)
21785
论文1v1指导