基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
DOE-2模型被广泛应用于冷水机组仿真建模,如何根据有限传感器实测数据对某特定冷水机组DOE-2模型的参数进行可靠地辨识,并补偿模型误差,对于节能运行等场景具有重要意义.在实践中由于传感器不足且数据质量不高等问题,DOE-2模型参数的可靠辨识较为困难.因此,本文提出一种基于外部知识库的遗传算法和一种基于人工神经网络的方法分别对DOE-2模型进行参数辨识和误差补偿.结果表明:基于外部知识库的遗传算法可以有效降低DOE-2模型参数辨识时间,并显著提升DOE-2模型预测精度.误差补偿后的DOE-2模型的预测精度显著高于未作补偿的DOE-2模型,前者在预测冷冻水出口温度时的MAE、RMSE、MAPE和CV-RMSE分别降低36.49%、46.00%、33.16%和45.73%,R2提高25.75%.
推荐文章
基于 Kriging模型的冷水机组故障检测与诊断方法
Kriging模型
冷水机组
故障检测
故障诊断
基于性能曲线的冷水机组配置和运行优化
冷水机组
性能曲线
配置
运行
优化
基于遗传算法和人工神经网络的颅内压监测
颅内压
遗传算法
人工神经网络
脑血流动力学参数
压缩式冷水机组节能优化研究
压缩式冷水机组
建模
过热度
遗传算法
节能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法和人工神经网络的冷水机组模型参数辨识及误差补偿方法
来源期刊 制冷学报 学科
关键词 冷水机组建模 遗传算法 参数辨识 人工神经网络 误差补偿
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 93-99
页数 7页 分类号 TU831.4|TP183
字数 语种 中文
DOI 10.3969/j.issn.0253-4339.2021.03.093
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
冷水机组建模
遗传算法
参数辨识
人工神经网络
误差补偿
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制冷学报
双月刊
0253-4339
11-2182/TB
大16开
北京海淀区阜成路67号银都大厦10层
892101
1979
chi
出版文献量(篇)
1936
总下载数(次)
0
总被引数(次)
21605
论文1v1指导