基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有识别算法中的核函数不能充分利用直方图的整体特征和不同维特征间的内在联系,提出基于度量核和广义直方图交叉(generalized histogram intersection,简称GHI)核混合的植物叶片识别算法.首先,构建多尺度边缘轮廓(multi-scale marginal contour,简称MMC)算子;其次,提取预处理后的叶片图像MMC形状特征、局部二值模式(local binary pattern,简称LBP)空域纹理特征、局部向量化(local phase quantization,简称LPQ)频域纹理特征,进而将这些特征拼接成复合特征;再次,利用度量学习和马氏距离改造负距离核构建度量核,将其与GHI核加权融合形成组合核;最后,进行仿真实验.仿真实验结果表明:相对于现有算法,该文算法对不同种类的植物叶片具有较高的识别率.
推荐文章
基于核学习和距离相似度量的行人再识别
行人再识别
测度学习
核学习
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
核函数的度量研究进展
核方法
核函数
核度量
支持向量机
分类
基于混合正态核函数的蚂蚁矿工算法
蚂蚁矿工算法
规则发现
混合正态核函数
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于度量核和GHI核混合的植物叶片识别算法
来源期刊 安徽大学学报(自然科学版) 学科 农学
关键词 度量学习 组合核函数 复合特征 叶片识别 支持向量机
年,卷(期) 2021,(2) 所属期刊栏目 电子与自动化技术
研究方向 页码范围 47-54
页数 8页 分类号 TP391|S126
字数 语种 中文
DOI 10.3969/j.issn.1000-2162.2021.02.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (18)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
度量学习
组合核函数
复合特征
叶片识别
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽大学学报(自然科学版)
双月刊
1000-2162
34-1063/N
大16开
安徽省合肥市
26-39
1960
chi
出版文献量(篇)
2368
总下载数(次)
6
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导