基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前癫痫自动检测算法多集中于为单个患者建立检测模型,泛化能力较弱的问题,提出一种基于机器学习的跨患者癫痫自动检测算法.该算法使用多个癫痫患者的脑电数据,先对数据进行预处理后分析脑电数据间存在的特征,再对特征进行筛选,训练出一个跨患者的癫痫自动检测模型.该算法不需为每个患者建立单独的检测模型,实现了仅使用一个检测模型即可对不同患者进行癫痫检测.实验结果准确率为0.877 4,敏感性为0.854 8,特异性为0.9.
推荐文章
微机自动检测算法的研究
检测算法
数字滤波
非线性补偿
标度变换
核孔膜自动检测算法的研究
核孔膜
二值化
检验周期
基于视频图像的交通事件自动检测算法综述
事件检测
目标检测
目标跟踪
行为识别
基于贝叶斯最小风险的癫痫脑电自动检测算法
癫痫
时域特征
随机映射
旋转森林
代价敏感
贝叶斯最小风险
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的跨患者癫痫自动检测算法
来源期刊 吉林大学学报(理学版) 学科 工学
关键词 癫痫检测 机器学习 脑电数据 滤波器 特征提取 特征选择
年,卷(期) 2021,(1) 所属期刊栏目 计算机科学
研究方向 页码范围 101-106
页数 6页 分类号 TP399
字数 语种 中文
DOI 10.13413/j.cnki.jdxblxb.2020036
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (6)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
癫痫检测
机器学习
脑电数据
滤波器
特征提取
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(理学版)
双月刊
1671-5489
22-1340/O
大16开
长春市南湖大路5372号
12-19
1955
chi
出版文献量(篇)
4812
总下载数(次)
6
总被引数(次)
24333
论文1v1指导