基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统基于物品的协同过滤算法由于物品相似度矩阵稀疏,推荐准确率不高.针对这一问题,提出一种基于标签和改进杰卡德系数的协同过滤算法,进行电视节目个性化推荐.首先,爬取相关信息对原始数据进行扩充,并利用统计学方法对时间特征进行归一化处理,计算用户偏好系数;然后,统计出现次数较高的类别作为推荐类别标签,并利用改进的杰卡德系数构造标签相似度矩阵;最后,根据推荐类别标签的用户偏好系数计算节目的推荐系数.实验结果表明,基于标签的协同过滤算法可以降低稀疏矩阵对推荐准确率的影响,相比基于物品的协同过滤算法,准确率提高了5%,召回率提高了3.1%.另外,使用改进的杰卡德系数计算相似度,减少了热门标签对推荐系统的影响,进一步将准确率提高了5%,召回率提高了2.3%.
推荐文章
基于标签分类的协同过滤推荐算法
协同过滤
矩阵分解
交替最小二乘法
迭代投影寻踪
监督学习
基于标签优化的协同过滤推荐算法
标签
拓展近邻
协同过滤
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标签的协同过滤推荐方法研究
来源期刊 北京联合大学学报(自然科学版) 学科
关键词 协同过滤 标签类别相似度 个性化推荐 惩罚系数 杰卡德系数
年,卷(期) 2021,(2) 所属期刊栏目 应用技术
研究方向 页码范围 47-52
页数 6页 分类号 TP391.3
字数 语种 中文
DOI 10.16255/j.cnki.ldxbz.2021.02.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (388)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(11)
  • 参考文献(3)
  • 二级参考文献(8)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
标签类别相似度
个性化推荐
惩罚系数
杰卡德系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京联合大学学报(自然科学版)
季刊
1005-0310
11-3224/N
北京北四环东路97号
chi
出版文献量(篇)
1853
总下载数(次)
8
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导