基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于卷积神经网络强大的特征学习与分类能力在图像识别与分类、目标检测、语义分割等领域得到了广泛地应用,提高卷积神经网络进行深度学习的效率和精度就显得更为重要.在卷积神经网络中,卷积核初始设计对深度学习的迭代效率等有着重要影响.本文以图像表格的识别与分类作为研究对象,提出了以图像表格的若干局部元素为基点,及其像素分布特征与初始化卷积核内参数分布相似的原则,对卷积核的初始化进行自定义设定卷积核参数,在此基础上进行图像表格的卷积神经网络深度学习,并与传统的Normal、Xavier等初始化方法进行了比较实验.实验结果表明,在神经网络学习过程中,本文的参数初始化方法在训练初期对表格识别的分类精度明显较高,总体分类准确率也明显较高.
推荐文章
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积核初始设置的卷积神经网络表格识别研究
来源期刊 新一代信息技术 学科
关键词 表格分类 卷积神经网络 卷积核参数
年,卷(期) 2021,(3) 所属期刊栏目 科技论文
研究方向 页码范围 30-35
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.2096-6091.2021.03.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (12)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(9)
  • 参考文献(1)
  • 二级参考文献(8)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表格分类
卷积神经网络
卷积核参数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
新一代信息技术
半月刊
2096-6091
10-1581/TP
北京市海淀区玉渊潭南路普惠南里13号楼
chi
出版文献量(篇)
639
总下载数(次)
4
总被引数(次)
21
论文1v1指导