基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
军事领域非结构化文本中的大量目标实体往往包含丰富的军事信息和军事知识,对其准确识别是进行军事信息抽取和军事知识组织的基础性关键任务,也是构建军事知识图谱的重要环节.针对军事领域标注数据不足以及军事实体边界模糊的问题,提出基于预训练BERT模型的深度学习识别方法.利用BERT生成基于当前输入语境特征的动态字向量来增强字的语义表示,融合字的含边界词性特征得到特征融合向量,再连接BiLSTM-CRF神经网络.在自建的军事领域标注数据集上的实验结果表明,相较于另外两种基准方法,该方法在准确率、召回率和F值上获得了更优的表现.
推荐文章
融合词位字向量的军事领域命名实体识别
军事
命名实体识别
词位字向量
BI-GRU-CRF
深度神经网络
序列标注
基于深度学习的医疗命名实体识别
实体识别
数据挖掘
深度学习
医疗信息
基于深度卷积特征的水下目标智能识别方法
无人水下航行器
智能识别
深度卷积神经网络
迁移学习
基于自发表情数据集预训练的多任务深度网络表情识别方法
表情识别
自然表情数据集
预训练
深度卷积神经网络
多任务学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于预训练BERT的军事领域目标实体深度学习识别方法
来源期刊 信息工程大学学报 学科
关键词 军事领域 实体识别 预训练BERT 深度学习
年,卷(期) 2021,(3) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 331-337
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1671-0673.2021.03.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (29)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(5)
  • 参考文献(4)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
军事领域
实体识别
预训练BERT
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息工程大学学报
双月刊
1671-0673
41-1196/N
大16开
郑州市科学大道62号
2000
chi
出版文献量(篇)
2792
总下载数(次)
2
总被引数(次)
9088
论文1v1指导