基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的动态手势识别3D卷积方法计算参数量大和对2D卷积长时间序列的空时特征难以提取的问题,提出一种基于2D卷积神经网络和长短期记忆网络相结合的提取时空域特征的动态手势识别方法.首先基于2D卷积神经网络提取空域特征,再通过长短期记忆网络进行序列图像时序上的相互关联提取时间维度上的信息.为验证算法的有效性,使用自采集的7种动态手势动作和IsoGD公开数据集对本文所提算法进行验证.实验结果表明,在线增强算法下实验在自采集的动态手势集上的识别率达到87.14%.在IsoGD公开数据集上的识别率达到57.89%,相对于现有的其他方法有所提升.
推荐文章
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于神经网络的手势识别
虚拟现实
手模型
手势识别
神经网络
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络空时特征提取的动态手势识别
来源期刊 计算机与现代化 学科
关键词 卷积神经网络 长短期记忆网络 动态手势识别 空时特征提取 在线数据增强
年,卷(期) 2021,(6) 所属期刊栏目 图像处理|IMAGE PROCESSING
研究方向 页码范围 41-47
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2021.06.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (3)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
长短期记忆网络
动态手势识别
空时特征提取
在线数据增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导