基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征信息.本文针对此问题,提出一种改进的具有迭代性的张量投票算法,它主要是对投票域进行迭代改进,使改进后的张量投票算法可以提取更为连续的显著线特征,且与传统的张量投票算法相比,本文算法既缩短了计算时间,又提取了更为连续的线特征图像.
推荐文章
一种改进的投票算法检测细胞核
细胞核检测
投票算法
高斯核
椭圆拟合
形态学
一种面向表情识别的ROI区域二级投票机制
卷积神经网络
表情识别
空间变换网络
二级投票机制
基于双向异步投票策略医学图像特征点匹配
医学图像
特征点匹配
双向异步
投票策略
图像拼接
一种星载高光谱图像特征提取算法的实现
高光谱
现场可编程门阵列
主成分分析
奇异值分解
并行流水
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种面向图像线特征提取的改进投票域的张量投票算法
来源期刊 河南理工大学学报(自然科学版) 学科
关键词 张量投票算法 投票域 迭代 图像线特征
年,卷(期) 2021,(1) 所属期刊栏目 计算机·人工智能·大数据
研究方向 页码范围 133-137
页数 5页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (4)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
张量投票算法
投票域
迭代
图像线特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南理工大学学报(自然科学版)
双月刊
1673-9787
41-1384/N
16开
河南省焦作市世纪大道2001号
3891
1981
chi
出版文献量(篇)
3451
总下载数(次)
5
总被引数(次)
20072
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导