基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 为了解决复杂环境中多人姿态估计存在的定位和识别等问题,提高多人姿态估计的准确率,减少算法存在的大量冗余参数,提高姿态估计的运行速率,提出了基于批量归一化层(batch normalization,BN)通道剪枝的多人姿态估计算法(YOLOv3 prune pose estimator,YLPPE).方法 以目标检测算法YOLOv3 (you only look once v3)和堆叠沙漏网络(stacked hourglass network,SHN)算法为基础,通过重叠度K-means算法修改YOLOv3网络锚框以更适应行人目标检测,并训练得到Trimming-YOLOv3网络;利用批量归一化层的缩放因子对Trimming-YOLOv3网络进行循环迭代式通道剪枝,设置剪枝阈值与缩放因子,实现较为有效的模型剪枝效果,训练得到Trim-Prune-YOLOv3网络;为了结合单人姿态估计网络,重定义图像尺寸为256×256像素(非正方形图像通过补零实现);再级联4个Hourglass子网络得到堆叠沙漏网络,从而提升整体姿态估计精度.结果 利用斯坦福大学的MPII数据集(MPII human pose dataset)进行实验验证,本文算法对姿态估计的准确率达到了83.9%;同时,时间复杂度为O(n2),模型参数量与未剪枝原始YOLOv3相比下降42.9%.结论 结合YOLOv3剪枝算法的多人姿态估计方法可以有效减少复杂环境对人体姿态估计的负面影响,实现复杂环境下的多人姿态估计并提高估计精度,有效减少模型冗余参数,提高算法的整体运行速率,能够实现较为准确的多人姿态估计,并具有较好的鲁棒性和泛化能力.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
基于YOLOv3的夜间防眩目LED车灯
防眩目车灯
目标检测
单片机
无人驾驶
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 YOLOv3剪枝模型的多人姿态估计
来源期刊 中国图象图形学报 学科
关键词 目标检测 多人姿态估计 模型剪枝 YOLOv3 堆叠沙漏网络 MPII数据集
年,卷(期) 2021,(4) 所属期刊栏目 图像分析和识别|Image Analysis and Recognition
研究方向 页码范围 837-846
页数 10页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (1)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
多人姿态估计
模型剪枝
YOLOv3
堆叠沙漏网络
MPII数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导