关系抽取是信息获取中一项关键技术.句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中.但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足.本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural net-work,AGLSTM).该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息.与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能.