基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
关系抽取是信息获取中一项关键技术.句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中.但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足.本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural net-work,AGLSTM).该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息.与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能.
推荐文章
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
基于记忆的注意力图神经网络专家推荐方法
专家推荐
图神经网络
记忆网络
注意力机制
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于关系抽取的注意力图长短时记忆神经网络
来源期刊 智能系统学报 学科
关键词 关系抽取 句子结构树 句法图 图神经网络 注意力图长短时记忆神经网络 软修剪策略 注意力机制 长短时记忆神经网络
年,卷(期) 2021,(3) 所属期刊栏目 知识工程|Knowledge Engineering
研究方向 页码范围 518-527
页数 10页 分类号 TP311
字数 语种 中文
DOI 10.11992/tis.202008036
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (42)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关系抽取
句子结构树
句法图
图神经网络
注意力图长短时记忆神经网络
软修剪策略
注意力机制
长短时记忆神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导