基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前车辆实时检测中存在定位不准确、检测精度低等问题,采用了一种以Darknet-53为骨架网络的YOLOv3车辆检测算法,将该算法模型在标准数据集Pascal-VOC2012上进行训练,以拍摄的西安南二环路的图片作为测试集进行测试.实验结果表明,YOLOv3算法的检测精度达到84.9%,相比于SSD算法,其检测精度提高了11.3%,检测速度提高了3.8 f/s.因此YOLOv3算法检测精度更好,检测速度更快,能准确地检测出图像中的车辆信息,满足车辆实时检测的要求.
推荐文章
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
基于深度学习方法的复杂场景下车辆目标检测
深度学习
Faster R-CNN
ImageNet数据集
车辆目标检测
基于深度序列加权核极限学习的入侵检测算法
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
基于SIFT特征的前方车辆检测算法
车辆检测
尺度不变特征转换特征
对称
匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的车辆检测算法研究
来源期刊 信息技术与网络安全 学科
关键词 YOLOv3算法 SSD算法 车辆实时检测 深度学习 目标检测
年,卷(期) 2021,(6) 所属期刊栏目 智能算法|Intelligent Algorithm
研究方向 页码范围 28-32
页数 5页 分类号 TP391.4|TP183
字数 语种 中文
DOI 10.19358/j.issn.2096-5133.2021.06.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (17)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2019(12)
  • 参考文献(4)
  • 二级参考文献(8)
2020(7)
  • 参考文献(7)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
YOLOv3算法
SSD算法
车辆实时检测
深度学习
目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导