基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用卷积神经网络实现了电线塔的提取与更新入库.首先将遥感影像分为训练区域与校正区域,结合本底矢量数据,在训练区域分别获得目标与非目标样本影像块,并以此训练卷积神经网络;再利用卷积神经网络在校正区域提取电线塔;然后通过与本底数据的叠置分析,获得电线塔的增量数据;最后根据不同的类型对增量数据进行更新入库.实验结果表明,该方法的检测率和误检率分别为0.758和0.375,可作为电线塔快速更新的有效手段,也可为其余重要要素更新提供参考.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的电线塔识别与更新入库
来源期刊 地理空间信息 学科
关键词 卷积神经网络 要素识别 变化检测 叠置分析 更新入库
年,卷(期) 2021,(7) 所属期刊栏目 测绘工程案例
研究方向 页码范围 85-87,122
页数 4页 分类号 P237
字数 语种 中文
DOI 10.3969/j.issn.1672-4623.2021.07.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
要素识别
变化检测
叠置分析
更新入库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导