基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
长短期记忆(long short-term memory,LSTM)模型可以克服循环神经网络(recurrent neural networks,RNN)在短期负荷预测中存在的梯度消失和梯度爆炸等问题,但LSTM模型的门控单元结构复杂,参数较多,模型训练较为困难.为此,提出一种采用改进粒子群优化(particle swarm optimization,PSO)算法优化的最小窥视孔长短期记忆(min peephole long short-term memory,MP-LSTM)模型.与经典LSTM模型相比,MP-LSTM模型舍弃了输入门和输出门,只保留遗忘门,模型包括1个sigmoid网络层和1个tanh网络层,减少了模型参数,优化了模型结构.对RNN模型、经典LSTM模型、MP-LSTM模型进行对比仿真分析,结果表明MP-LSTM模型可有效提高负荷预测精度,缩短收敛时间.
推荐文章
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
电力系统短期负荷预测的多神经网络Boosting集成模型
短期负荷预测
Boosting算法
神经网络集成
电力系统短期负荷预测的多神经网络集成模型
自适应神经网络
短期负荷预测
Boosting算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小窥视孔长短期记忆神经网络的电力系统短期负荷预测模型
来源期刊 广东电力 学科
关键词 短期负荷预测 最小窥视孔长短期记忆神经网络 粒子群优化算法 电力系统 循环神经网络
年,卷(期) 2021,(3) 所属期刊栏目 电网运行与控制|Power Grid Operation & Control
研究方向 页码范围 92-97
页数 6页 分类号 TM715.1|TP183
字数 语种 中文
DOI 10.3969/j.issn.1007-290X.2021.003.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (173)
共引文献  (570)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(18)
  • 参考文献(0)
  • 二级参考文献(18)
2016(29)
  • 参考文献(0)
  • 二级参考文献(29)
2017(40)
  • 参考文献(1)
  • 二级参考文献(39)
2018(27)
  • 参考文献(7)
  • 二级参考文献(20)
2019(9)
  • 参考文献(2)
  • 二级参考文献(7)
2020(7)
  • 参考文献(6)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
最小窥视孔长短期记忆神经网络
粒子群优化算法
电力系统
循环神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广东电力
月刊
1007-290X
44-1420/TM
大16开
广州市东风东路水均岗8号
1988
chi
出版文献量(篇)
5373
总下载数(次)
16
总被引数(次)
27406
论文1v1指导