基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前电动公交车的渗透率较大,且充电频率和充电量较高,故而其充电负荷对电网运行与调度产生着不可忽略的影响.因此,电动公交车的充电负荷预测研究具有重要的理论与现实意义,但由于公交车间歇性与随机性的充电行为在时间上给充电负荷预测增加了难度.为此,提出基于谱聚类和长短期记忆(long short-term memory,LSTM)神经网络的电动公交车充电负荷预测方法.首先,利用考虑距离与形态的谱聚类,对充电负荷曲线进行聚类;其次,综合考虑影响充电负荷的关键因素,如温度、日类型等,利用不同簇的总充电负荷,分别训练LSTM神经网络的模型参数,并预测每簇的充电负荷;接着,对不同簇的预测结果求和即可得到预测日的总充电负荷;最后,通过利用某市实际数据,验证本文所提方法.结果表明,所提方法充电负荷预测结果的平均绝对百分误差(mean absolute percentage error,MAPE)在11%以下,预测准确度有所提升.
推荐文章
基于BP神经网络的公交车到站时间预测
公交车到站时间
智能化
公交调研
非线性
数学模型
BP神经网络
基于RBF算法的公交车到站时间预测
公交车
时间预测
RBF神经网络
数学建模
网络训练
仿真分析
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于谱聚类和LSTM神经网络的电动公交车充电负荷预测方法
来源期刊 电力建设 学科
关键词 谱聚类 长短期记忆网络(LSTM) 电动公交车 负荷预测
年,卷(期) 2021,(6) 所属期刊栏目 电动汽车参与电网调度的关键技术|Key Technologies of Electric Vehicle Participating in Power Grid Dispatching
研究方向 页码范围 58-66
页数 9页 分类号 TM715
字数 语种 中文
DOI 10.12204/j.issn.1000-7229.2021.06.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (234)
共引文献  (376)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(15)
  • 参考文献(2)
  • 二级参考文献(13)
2012(17)
  • 参考文献(0)
  • 二级参考文献(17)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(20)
  • 参考文献(0)
  • 二级参考文献(20)
2015(39)
  • 参考文献(0)
  • 二级参考文献(39)
2016(23)
  • 参考文献(1)
  • 二级参考文献(22)
2017(27)
  • 参考文献(3)
  • 二级参考文献(24)
2018(19)
  • 参考文献(2)
  • 二级参考文献(17)
2019(11)
  • 参考文献(4)
  • 二级参考文献(7)
2020(5)
  • 参考文献(3)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
谱聚类
长短期记忆网络(LSTM)
电动公交车
负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力建设
月刊
1000-7229
11-2583/TM
大16开
北京市昌平区北七家镇未来科技城国家电网办公区A座225
82-679
1958
chi
出版文献量(篇)
6415
总下载数(次)
11
总被引数(次)
42832
论文1v1指导