基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决对于尺度变换较大车辆及遮挡车辆检测性能不足的问题,提出了一种实时车辆检测模型.针对车辆检测算法对于尺度敏感的问题,通过使用深度残差网络作为特征提取层,构建特征金字塔网络用于多尺度检测;利用软化非极大抑制线性衰减置信得分解决车辆遮挡问题,从而降低车辆的漏检率;同时对模型进行通道级裁剪缩减模型参数规模,节省计算资源,提高模型检测速度.在VOC数据集上进行实验,结果表明,提出的方法在检测精度和检测速度上均获得较高的性能.在检测精度上,达到87.6%的准确率,相较于YOLOv3提升了3.7个百分点,相较于SSD提升了9.8个百分点;在检测速度上,每秒检测帧数达到42 f/s,实现了车辆的实时检测.特别地,将模型应用于环境复杂的Apollo数据集,相较于YOLOv3具有更好的鲁棒性.
推荐文章
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的实时车辆检测
来源期刊 计算机工程与应用 学科 工学
关键词 车辆检测 卷积神经网络 残差学习 特征金字塔 网络裁剪
年,卷(期) 2021,(5) 所属期刊栏目 工程与应用
研究方向 页码范围 222-228
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0328
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (37)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(18)
  • 参考文献(0)
  • 二级参考文献(18)
2018(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车辆检测
卷积神经网络
残差学习
特征金字塔
网络裁剪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导