基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 基于神经网络的图像超分辨率重建技术主要是通过单一网络非线性映射学习得到高低分辨率之间特征信息关系来进行重建,在此过程中较浅网络的图像特征信息很容易丢失,加深网络深度又会增加网络训练时间和训练难度.针对此过程出现的训练时间长、重建结果细节信息较模糊等问题,提出一种多通道递归残差学习机制,以提高网络训练效率和图像重建质量.方法 设计一种多通道递归残差网络模型,该模型首先利用递归方法将残差网络块进行复用,形成32层递归网络,来减少网络参数、增加网络深度,以加速网络收敛并获取更丰富的特征信息.然后采集不同卷积核下的特征信息,输入到各通道对应的递归残差网络后再一起输入到共用的重建网络中,提高对细节信息的重建能力.最后引入一种交叉学习机制,将通道1、2、3两两排列组合交叉相连,进一步加速不同通道特征信息融合、促进参数传递、提高网络重建性能.结果 本文模型使用DIV2K(DIVerse 2 K)数据集进行训练,在Set5、Set14、BSD100和Urban100数据集上进行测试,并与Bicubic、SRCNN(super-resolution convolutional neural network)、VDSR (super-resolution using very deep convolutional network)、LapSRN (deep Laplacian pyramid networks for fast and accurate super-resolution)和EDSR_baseline(enhanced deep residual networks for single image super-resolution_baseline)等方法的实验结果进行对比,结果显示前者获取细节特征信息能力提高,图像有了更清晰丰富的细节信息;客观数据方面,本文算法的数据有明显的提升,尤其在细节信息较多的Urban100数据集中PSNR(peaksignal-to-noise ratio)平均分别提升了3.87 dB、1.93 dB、1.00 dB、1.12 dB和0.48 dB,网络训练效率相较非递归残差网络提升30%.结论 本文模型可获得更好的视觉效果和客观质量评价,而且相较非递归残差网络训练过程耗时更短,可用于复杂场景下图像的超分辨率重建.
推荐文章
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
基于递归残差网络的遥感图像超分辨率重建
递归残差网络
遥感图像超分辨率重建
残差学习
递归学习
基于递归残差网络的图像超分辨率重建
递归结构
残差学习
卷积神经网络
深度学习
超分辨率
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多通道递归残差网络的图像超分辨率重建
来源期刊 中国图象图形学报 学科
关键词 超分辨重建 多通道 递归 交叉 残差网络模型
年,卷(期) 2021,(3) 所属期刊栏目 图像理解和计算机视觉|Image Understanding and Computer Vision
研究方向 页码范围 605-618
页数 14页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (130)
共引文献  (56)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(22)
  • 参考文献(1)
  • 二级参考文献(21)
2018(42)
  • 参考文献(3)
  • 二级参考文献(39)
2019(19)
  • 参考文献(3)
  • 二级参考文献(16)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨重建
多通道
递归
交叉
残差网络模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导