基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法.以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构信息丢失.设计一个自编码器作为注意力网络,估计图像中的光照分布并指导图像不同亮度区域的自适应增强.构建具有判别图像局部区域能力的判别器结构,约束生成器输出增强效果更加自然的图像.实验结果表明,该方法能够有效增强水上低照度图像,场景还原和细节保留能力优于SRIE和LIME等方法.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
一种基于U-Net生成对抗网络的低照度图像增强方法
低照度图像
图像增强
生成对抗网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部生成对抗网络的水上低照度图像增强
来源期刊 计算机工程 学科
关键词 低照度图像增强 深度学习 生成对抗网络 金字塔扩张卷积 自适应增强
年,卷(期) 2021,(5) 所属期刊栏目 热点与综述|Hot Topics and Reviews
研究方向 页码范围 16-23
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0060354
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (9)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
低照度图像增强
深度学习
生成对抗网络
金字塔扩张卷积
自适应增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导