基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据课堂教学场景设计了三维卷积神经网络(3D-convolutional neural network,3D-CNN),以动态性为主要特征,对教师进行课堂行为识别;提出了经过改进损失函数的YOLO-v5(you only look once version 5th)模型,并以多目标为主要特征,对学生进行课堂行为识别.2种模型均取得了较好的识别结果.为验证所选用模型的有效性,在所标注课堂行为数据集上进行了模型性能对比试验.试验结果表明:所选用模型在教育场景下课堂行为识别工作中展现了较好的性能;课堂行为的精准识别能够帮助教师和学生了解课堂学情,有助于推动智慧课堂的发展.
推荐文章
深度学习网络的光通信系统入侵行为识别
深度学习
光通信系统
入侵行为
识别技术
面向人体行为识别的深度特征学习方法比较
深度学习
行为识别
序列数据分类
深度卷积神经网络
长短期时间记忆网络
基于深度学习的教室人体行为识别模型设计
计算机视觉
行为识别
深度学习
卷积神经网络
基于深度学习的轻量型人体动作识别模型
深度学习
图像处理
卷积神经网络
动作识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习模型驱动的师生课堂行为识别
来源期刊 北京师范大学学报(自然科学版) 学科 工学
关键词 深度学习 行为识别 智慧课堂 计算机视觉
年,卷(期) 2021,(6) 所属期刊栏目 专题人工智能关键技术与应用
研究方向 页码范围 905-912
页数 8页 分类号 TP181
字数 语种 中文
DOI 10.12202/j.0476-0301.2021207
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
行为识别
智慧课堂
计算机视觉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京师范大学学报(自然科学版)
双月刊
0476-0301
11-1991/N
大16开
北京新外大街19号
82-406
1956
chi
出版文献量(篇)
3342
总下载数(次)
10
总被引数(次)
24959
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导