基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱数据具有丰富的光谱特征,但是其空间分辨率相对较低.一些遥感数据具有与高光谱数据互补的优势,例如提供更精细的空间信息的高空间分辨率数据和具有高度信息的激光雷达LiDAR(Light Detection and Ranging)数据.通过将高光谱数据与多源遥感数据进行融合,可以弥补高光谱数据空间分辨率相对较低,空间特征不够丰富的缺点.近年来,基于深度学习的方法已经在遥感数据分类研究中取得了一定的进展.然而,由于深度网络的特征提取过程是一个自主的过程,往往无法精确的获取最有利于遥感数据分类的特征;同时,深度学习方法具有复杂的网络结构和大量的参数,往往会在分类训练过程中造成参数拟合困难.以上这些因素会导致分类效果不佳.针对这些问题,本文提出了一种将卷积神经网络CNN(Convolutional Neural Network)和纹理特征相结合的多源遥感数据特征级融合分类框架.该方法共3个步骤,首先,对高光谱数据或多源遥感数据提取纹理特征;然后,构造CNN,分别将原始高光谱遥感数据、原始多源遥感数据和第一步中获得的纹理特征作为深度网络的输入进行深度特征提取;最后,将分别提取到的深度特征拼接,并利用Softmax分类器进行分类.为了验证本文提出方法的分类效果,本文在休斯顿和塞特福德矿地区公开数据集上进行实验,并将该分类框架与支持向量机分类方法、像素级融合分类方法和特征级融合分类方法进行对比.由此可以分析得出,本文提出的基于深度学习的融合分类方法可以获得较高的分类精度.
推荐文章
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
基于光谱复原的高光谱高空间遥感数据融合研究
遥感数据融合
光谱复原
空间域变换
资源一号02D卫星高光谱与多光谱遥感影像融合方法
资源一号02D卫星
高光谱与多光谱影像融合
深度学习
通道注意力
采用ACGAN及多特征融合的 高光谱遥感图像分类
高光谱图像分类
生成对抗网络
局部二值模式
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合深度学习的高光谱与多源遥感数据融合分类
来源期刊 遥感学报 学科
关键词 卷积神经网络 高光谱数据 高分辨率数据 激光雷达数据 图像融合 传统特征 分类
年,卷(期) 2021,(7) 所属期刊栏目 博士论坛|Doctor's Voice
研究方向 页码范围 1489-1502
页数 14页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (131)
共引文献  (51)
参考文献  (29)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(14)
  • 参考文献(3)
  • 二级参考文献(11)
2015(16)
  • 参考文献(7)
  • 二级参考文献(9)
2016(12)
  • 参考文献(3)
  • 二级参考文献(9)
2017(17)
  • 参考文献(1)
  • 二级参考文献(16)
2018(13)
  • 参考文献(2)
  • 二级参考文献(11)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
高光谱数据
高分辨率数据
激光雷达数据
图像融合
传统特征
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感学报
月刊
1007-4619
11-3841/TP
大16开
北京市安外大屯路中国科学院遥感与数字地球研究所
82-324
1986
chi
出版文献量(篇)
2330
总下载数(次)
13
总被引数(次)
68505
论文1v1指导