基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为使神经网络模型能在实时性要求较高且内存容量受限的边缘设备上部署使用,提出一种基于半波高斯量化与交替更新的混合压缩方法.对神经网络模型输入部分进行2 bit均匀半波高斯量化,将量化值输入带有缩放因子的二值网络通过训练得到初始二值模型,利用交替更新方法对已训练的二值模型进行逐层微调以提高模型测试精度.在CIFAR-10和ImageNet数据集上的实验结果表明,该方法能有效降低参数和结构冗余所导致的内存和时间开销,在神经网络模型压缩比接近30的前提下,测试精度相比HWGQ-Net方法提高0.8和2.0个百分点且实现了10倍的训练加速.
推荐文章
面向轻量化神经网络的模型压缩与结构搜索
轻量化神经网络
模型压缩
遗传算法
权重共享
关联小波神经网络与高斯混合模型说话人识别
信号处理
语音识别
说话人识别
小波神经网络
高斯混合模型
结合高斯核函数的卷积 神经网络跟踪算法
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
一种小波域内的BP神经网络图像压缩方法
图像压缩
提升小波变换
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合半波高斯量化与交替更新的神经网络压缩方法
来源期刊 计算机工程 学科
关键词 卷积神经网络 量化 模型压缩 半波高斯量化 交替更新
年,卷(期) 2021,(5) 所属期刊栏目 人工智能与模式识别|Artificial Intelligence and Pattern Recognition
研究方向 页码范围 80-87
页数 8页 分类号 TP183
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0057842
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
量化
模型压缩
半波高斯量化
交替更新
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导