基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决智能驾驶系统中夜间车辆检测误检多、远处小目标检测效果差的问题,在RetinaNet的基础上对损失函数进行全面优化.在分类损失函数方面,分析了负样本与正样本交并比的产生机理和对训练的影响,构造了关联交并比的分类损失函数,利用负样本交并比使网络注重于训练难分类负样本,同时利用正样本交并比提高了检测框的定位精度;在定位损失函数方面,改进了传统L1损失的归一化方式,提高了小目标检测能力.此外,针对夜间场景中的车辆特征对网络结构进行了优化设计,并在夜间车辆数据集上进行了测试验证,结果表明模型优化后的平均检测精度提升了14.6%.
推荐文章
采用梯度滤波方法的夜间车辆检测
夜间视觉
交通监控
梯度滤波
三帧差分
级联形态学滤波
基于RetinaNet的SAR图像舰船目标检测
合成孔径雷达(SAR)图像
舰船目标检测
深度学习
RetinaNet
一种基于帧差法的夜间车辆检测方法
车辆检测
帧差法
光晕抑制
车型判断
利用D-S证据理论的夜间车辆检测
D-S证据理论
夜间车辆
车辆检测
车灯检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RetinaNet及优化损失函数的夜间车辆检测方法
来源期刊 汽车工程 学科
关键词 夜间车辆检测 损失函数 交并比 RetinaNet 小目标检测
年,卷(期) 2021,(8) 所属期刊栏目
研究方向 页码范围 1195-1202
页数 8页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2021.08.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (12)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
夜间车辆检测
损失函数
交并比
RetinaNet
小目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导