基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
卷积神经网络在图像去噪方面取得了很好的效果,但是传统的压缩-解压缩结构的神经网络会不可避免地损坏原始图像信息.为了更有效地去除图像中的噪声,本文提出一种改进的多尺度特征融合并行稠密残差去噪神经网络框架,旨在更好地恢复图像边缘和纹理信息.首先使用并行网络结构以结合不同深度的图像信息,每个分支由一些残差稠密块构成,在此基础上加入残差块之间的远程跳跃连接以克服网络训练过程中出现的梯度消失和梯度弥散问题并提高网络训练性能.另外,在结合图像浅层信息与深层信息的基础上,在每个网络分支内部加入多尺度特征融合模块以获取不同深度下的多尺度图像特征信息.最后,采用残差学习的方式进一步提高网络性能.对比试验表明,本文方法在不同噪声强度下均取得了良好的效果,证明了所提出网络能够在抑制噪声的同时有效地保留原始图像的边缘和纹理信息.
推荐文章
一种红外图像去噪的多尺度几何分析法
多尺度几何分析
bandelets变换
模糊阈值
红外图像去噪
一种改进的小波阈值去噪方法
小波变换
阈值
去噪
一种改进的深度残差网络行人检测方法
行人识别
深度残差网络
YOLOv2
卷积神经网络
深度学习
一种改进的小波阈值去噪方法
图像去噪
FastICA
MPSO
小波阈值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的多尺度融合并行稠密残差去噪网络
来源期刊 小型微型计算机系统 学科
关键词 深度学习 稠密残差网络 多尺度融合 并行网络 图像去噪
年,卷(期) 2021,(4) 所属期刊栏目 图形与图像技术|Graphics and Image Technology
研究方向 页码范围 798-804
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.04.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (177)
参考文献  (32)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(2)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(1)
  • 二级参考文献(3)
1994(3)
  • 参考文献(2)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(12)
  • 参考文献(3)
  • 二级参考文献(9)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
稠密残差网络
多尺度融合
并行网络
图像去噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导