基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网信息技术的迅速发展,网络数据量快速增长,如何在海量数据中找到用户感兴趣的信息并实现个性化推荐是目前重要的研究方向.协同过滤算法作为推荐系统中的经典方法被广泛应用于不同场景,但是仍然存在数据稀疏,以及在计算相似度时不能考虑到所有数据的问题,只能够利用具有共同评分的数据,严重影响了推荐的精确度.针对上述存在的问题,提出了一种融合上下文信息与核密度估计的协同过滤个性化推荐算法.该算法通过对用户和项目各自的上下文信息和已经存在的用户评分数据进行处理,通过核密度估计构建用户和项目的兴趣模型,充分挖掘了用户和项目的兴趣分布,以获得更准确的用户和项目兴趣相似度,降低预测评分误差.在公开的数据集上验证表明,将该算法对比传统的协同过滤算法,有效提高了推荐的精确度.
推荐文章
一种基于时间和标签上下文的协同过滤推荐算法
推荐系统
概率矩阵分解
时间上下文
标签上下文
融合上下文感知计算的协同过滤算法
协同过滤算法
上下文感知计算
相似度
基于情景上下文与信任关系的旅游景点推荐算法
情景上下文
信任度
协同过滤
推荐
个性化
基于谱聚类与多因子融合的协同过滤推荐算法
协同过滤
谱聚类
Salton因子
时间衰减因子
用户偏好因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合上下文信息与核密度估计的协同过滤推荐
来源期刊 计算机技术与发展 学科
关键词 协同过滤算法 核密度估计 上下文信息 兴趣估计模型 推荐系统
年,卷(期) 2021,(4) 所属期刊栏目 大数据分析与挖掘
研究方向 页码范围 34-39
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.04.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (25)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(6)
  • 参考文献(5)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤算法
核密度估计
上下文信息
兴趣估计模型
推荐系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导