基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
离格(off-grid)波达方向(DOA)估计解决的是实际DOA和假设网格点的失配问题.对于空间紧邻信号的DOA,稀疏的网格点会导致精度和分辨率的下降,密集的网格点虽然可以提高估计精度却显著增加计算负担.针对此问题,该文提出基于稀疏贝叶斯学习(SBL)的空间紧邻信号DOA估计算法,主要包括3个步骤.首先,通过最大化阵列输出的边缘似然函数,推导了信号在拉普拉斯先验下的新不动点迭代方法,进行超参数的预估计,相比其他经典SBL算法提高了收敛速度;其次,利用新网格插值方法优化网格点集,并二次估计噪声方差和信号功率以分辨空间紧邻信号的DOA;最后,推导了似然函数关于角度的最大化公式以改进离格DOA搜索.仿真表明该算法比其他经典SBL类算法对空间紧邻信号的DOA具有更高的精度和分辨率,同时有计算效率的提升.
推荐文章
基于改进块稀疏贝叶斯学习算法的波达方向估计
空时联合
块稀疏
稀疏贝叶斯学习
DOA估计
基于稀疏贝叶斯学习的DOA估计
波达方向
稀疏表示
贝叶斯学习
基于变分稀疏贝叶斯学习的DOA估计
DOA估计
贝叶斯学习
变分贝叶斯学习
稀疏表示
相关向量机
MATLAB仿真
估计精度
收敛速度
基于稀疏贝叶斯学习的低信噪比DOA估计算法
波达方向(DOA)估计
稀疏贝叶斯学习
伪噪声重采样
低信噪比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏贝叶斯学习的空间紧邻信号DOA估计算法
来源期刊 电子与信息学报 学科
关键词 波达方向估计 离格 稀疏贝叶斯学习 空间紧邻
年,卷(期) 2021,(3) 所属期刊栏目 阵列信号处理|Array Signal Processing
研究方向 页码范围 708-716
页数 9页 分类号 TN911.72
字数 语种 中文
DOI 10.11999/JEIT200656
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (3)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
波达方向估计
离格
稀疏贝叶斯学习
空间紧邻
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导