基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统图像修复方法在修复受损区域较大的图像时会出现修复结果过于平滑或模糊的现象,并且较难重建合理的人脸图像结构.在传统生成对抗网络的鉴别器中引入多尺度特征融合方法,将不同深度的特征图经过上采样后直接相加,使浅层信息和深层信息有效结合.通过借助高层特征把握图像的整体规律,同时利用低层特征填充人脸图像的细节纹理,进而使一张图像的分辨率及其语义特征相互融合,实现有效的人脸图像修复.在CelebA数据集上的实验结果表明,该方法的峰值信噪比、相似性结构、L1损失指标均优于区域归一化方法,取得了较好的视觉效果.
推荐文章
引入多尺度特征图融合的人脸关键点检测网络
深度学习
人脸关键点检测
热度图融合
关键点热度图
基于多尺度分析的人脸识别算法研究
人脸识别
多尺度分析
轮廓特征
角点特征
基于多特征融合CNN的人脸识别算法研究
人脸识别
卷积神经网络(CNN)
多特征融合
leakyrelu激活函数
人脸数据集
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征融合的人脸图像修复方法
来源期刊 计算机工程 学科
关键词 图像修复 生成对抗网络 多尺度特征融合 鉴别器 高层特征 低层特征
年,卷(期) 2021,(5) 所属期刊栏目 图形图像处理|Graphics and Image Processing
研究方向 页码范围 213-220,228
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0060053
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像修复
生成对抗网络
多尺度特征融合
鉴别器
高层特征
低层特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
论文1v1指导