基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脑机接口是一种通过特定手段对脑电信号进行提取,利用信号处理算法解码,分析大脑信号,识别人脑的技术.为了提高二分类运动想象脑电信号的识别准确率,该文提出了一种基于LSTM神经网络的脑电信号分类方法,以2003年BCI国际竞赛的公开数据对所提出的方法进行验证.实验结果证明,LSTM神经网络训练出的模型具有良好的效果,分类的平均准确率接近90%.
推荐文章
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
LMD算法与运动想象脑电信号的时频分析
LMD分解
运动想象
脑电信号
时频分析
基于运动想象的脑电信号的分类研究
脑电信号
脑机接口
时频特征
带通滤波
线性感知器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM的运动想象脑电信号分类方法
来源期刊 电子设计工程 学科
关键词 脑机接口 运动想象 LSTM 深度学习
年,卷(期) 2021,(4) 所属期刊栏目 通信与网络|Communication & Network
研究方向 页码范围 88-92
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.14022/j.issn1674-6236.2021.04.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (155)
共引文献  (49)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(14)
  • 参考文献(2)
  • 二级参考文献(12)
2017(19)
  • 参考文献(5)
  • 二级参考文献(14)
2018(14)
  • 参考文献(3)
  • 二级参考文献(11)
2019(5)
  • 参考文献(2)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑机接口
运动想象
LSTM
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子设计工程
半月刊
1674-6236
61-1477/TN
大16开
西安市高新区高新路25号瑞欣大厦10A室
52-142
1994
chi
出版文献量(篇)
14564
总下载数(次)
54
总被引数(次)
54366
论文1v1指导