基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据遥感图像的特点,针对海面目标难以准确识别的问题,提出了一种基于深度卷积神经网络的船只识别方法.首先利用分类网络进行图像的预分类,然后在分类结果的基础上,构成双通道的识别体制,识别网络采用Faster R-CNN.针对受云雾遮挡的船只识别问题,利用改进的深度卷积神经网络结构开展网络训练与调优,处理结果的F1-Score最高可达0.7253.训练的网络模型表现出很好的船只目标识别能力,处理结果证明了该方法的有效性与准确性.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的遥感图像船只识别
来源期刊 地理空间信息 学科
关键词 遥感图像处理 深度学习 卷积神经网络 目标识别
年,卷(期) 2021,(9) 所属期刊栏目 技术热点研究
研究方向 页码范围 7-9
页数 3页 分类号 P237
字数 语种 中文
DOI 10.3969/j.issn.1672-4623.2021.09.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (8)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像处理
深度学习
卷积神经网络
目标识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导