作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
自适应短波通信系统可以解决短波信道质量差、频率资源短缺等问题,而信道质量估计是其中的重要环节.为了避免基于深度学习的传统方法中基带信号过大而无法提取的问题,该文将基带信号转换成星座轨迹图,再分别采用AlexNet,ResNet和DenseNet三种卷积神经网络对其进行训练.实验结果验证了该文提出方法的可行性,且随着网络的加深,准确度也将提升.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于卷积神经网络和贝叶斯分类器的句子分类模型
深度学习
句子分类
卷积神经网络
主成分分析法
贝叶斯分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的短波信道质量分类
来源期刊 现代信息科技 学科
关键词 自适应短波通信 卷积神经网络 星座轨迹图 深度学习 信道质量分类
年,卷(期) 2021,(6) 所属期刊栏目 通信工程|Communication Engineering
研究方向 页码范围 70-72,76
页数 4页 分类号 TP183|TN925
字数 语种 中文
DOI 10.19850/j.cnki.2096-4706.2021.06.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (23)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(7)
  • 参考文献(1)
  • 二级参考文献(6)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自适应短波通信
卷积神经网络
星座轨迹图
深度学习
信道质量分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导