基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱与全色影像融合旨在通过融合高空间分辨率的全色影像与低空间分辨率的高光谱影像来获得高空间分辨率的高光谱影像.基于深度卷积神经网络(CNN),提出了一种遥感影像融合方法,利用两个独立的分支网络逐级从高光谱和全色影像中提取光谱和空间特征.该融合网络由两个分支网络和一个主线网络组成,利用两个分支网络分别从高光谱与全色影像中提取空谱特征,主线网络基于分支网络提取的特征,重建得到最终融合的高空间分辨率的高光谱影像.在CAVE和Pavia Center数据集上分别进行了实验验证,通过对比可以发现,所提出的融合算法在空间细节和光谱保真度上较当前主流算法均表现出更优异的性能.
推荐文章
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
资源一号02D卫星高光谱与多光谱遥感影像融合方法
资源一号02D卫星
高光谱与多光谱影像融合
深度学习
通道注意力
一种多光谱图像和全色图像融合算法
多光谱融合
独立分量分析
基于多特征的高光谱与全色图像融合方法
高光谱
全色图像
图像融合
多分辨率分析
平均梯度
边缘特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多分支CNN的高光谱与全色影像融合处理
来源期刊 光学学报 学科
关键词 图像处理 高光谱影像 融合 卷积神经网络 空谱特征
年,卷(期) 2021,(7) 所属期刊栏目 图像处理|Image Processing
研究方向 页码范围 47-55
页数 9页 分类号 TP751.1
字数 语种 中文
DOI 10.3788/AOS202141.0710001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (22)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
高光谱影像
融合
卷积神经网络
空谱特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
论文1v1指导