基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法.首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型.为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术.最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别.
推荐文章
基于AR-FCM的滚动轴承的性能退化评估
AR模型
FCM模型
滚动轴承
性能退化评估
希尔伯特包络解调
基于集成软竞争ART的滚动轴承性能退化趋势预测
软竞争ART-RBF
自组织映射网络
置信度值
滚动轴承
预测
采用时间序列突变点检测的滚动轴承性能退化评价方法
性能退化评价
特征提取
时间序列突变点
局部线性嵌入
滚动轴承
基于小波包Tsallis熵和FCM的滚动轴承性能退化评估
滚动轴承
性能退化评估
模糊C均值
小波包Tsallis熵
早期故障
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法
来源期刊 机械工程学报 学科 工学
关键词 特征噪声能量比 滚动轴承性能退化评估 早期故障检测 改进深度残差收缩网络 寿命状态识别
年,卷(期) 2021,(15) 所属期刊栏目 机械动力学
研究方向 页码范围 105-115
页数 11页 分类号 TH17|TN911
字数 语种 中文
DOI 10.3901/JME.2021.15.105
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征噪声能量比
滚动轴承性能退化评估
早期故障检测
改进深度残差收缩网络
寿命状态识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程学报
半月刊
0577-6686
11-2187/TH
大16开
北京百万庄大街22号
2-362
1953
chi
出版文献量(篇)
12176
总下载数(次)
57
总被引数(次)
241354
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导