基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为预防和管控城市突发地质灾害造成的人民生命和财产损失,国家针对城市地质灾害易发地区部署了大量的各类传感器,用来感知和监测城市边坡等地质体的变化情况,以支持对地质灾害的预警.从边坡监测数据特点和时序数据分析技术出发,针对监测数据噪声混杂、模式分析困难、预警阈值的不确定性等问题,给出了一种基于多传感器信息融合的边坡监测数据异常事件检测方法.主要工作包括:①边坡监测数据变化模式可以归结为周期项、趋势项以及噪声项的叠加,实践中在预处理基础上对边坡监测数据进行周期为24 h的重采样,同时趋势项可以近似看作是经典的牛顿运动,以此构建形变运动模型,为卡尔曼滤波的状态转移提供理论支持;②采用集中式衰减记忆卡尔曼滤波,引入衰减记忆因子,对多传感器边坡监测数据进行特征级融合,降低了噪声的影响,提高了边坡监测数据的可靠性;③引入惩罚系数,应用改进的动态时间弯曲算法对于周期序列数据进行相似性度量.在此基础上基于K-means聚类和局部异常因子分析对边坡监测数据进行异常检测,并基于3σ准则确定预警阈值.该方法能将正常模式和异常模式的时序数据进行区分,有效检测出边坡监测数据的异常,为灾害预防提供支持.最后以深圳市典型边坡监测数据为例验证了此方法的可行性.
推荐文章
基于二值检测器的交通异常事件传感器设计
传感器
二值检测器
交通状态参数
状态识别算法
异常事件检测算法
数据融合技术在高速公路异常事件检测中的应用
数据融合
多传感器
交通事件检测
公路监控系统
环境监测中多传感器数据融合研究
环境监测
多传感器
数据融合
欧式距离
模糊神经网络
基于粒子滤波和检测信息的多传感器融合跟踪
粒子滤波器
多传感器
信息融合
检测和跟踪
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多传感器信息融合的城市边坡监测数据异常事件检测
来源期刊 地质科技通报 学科 地球科学
关键词 时序数据 多传感器信息融合 卡尔曼滤波 动态时间弯曲 边坡监测数据异常事件检测
年,卷(期) 2022,(2) 所属期刊栏目 “地灾失稳机制及其风险评价”专辑
研究方向 页码范围 13-25
页数 13页 分类号 X830.3
字数 语种 中文
DOI 10.19509/j.cnki.dzkq.2022.0060
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时序数据
多传感器信息融合
卡尔曼滤波
动态时间弯曲
边坡监测数据异常事件检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地质科技通报
双月刊
1000-7849
42-1904/P
大16开
湖北省武昌鲁磨路388号
1982
chi
出版文献量(篇)
3306
总下载数(次)
6
总被引数(次)
35542
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导