基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对车载激光雷达扫描得到的点云进行语义分割是保证行车安全、加强驾驶员对周边环境理解的重要手段之一.因为内存限制和大规模点云场景更加稀疏的特点,将传统神经网络的方法直接沿用到车载激光雷达扫描得到的点云场景中的效果不佳.本文中针对大规模点云的稀疏性,利用稀疏卷积神经网络对体素化点云进行特征提取.考虑到逐点处理分支抑制点云数据的密度不一致性导致的信息损失,另外设计了3D-CA和3D-SA模块,使稀疏卷积神经网络更好地提取特征.实验结果表明,与传统卷积神经网络的方法和将点云投影到平面的方法相比,使用稀疏卷积神经网络对大规模点云进行语义分割,可将平均交并比提升4.1%和3.4%,证明了该方法的有效性.
推荐文章
利用神经网络的城区机载激光雷达点云分类算法
神经网络
激光雷达
数据压缩
邻域特征提取
点云分类
利用稀疏语义结合双层深度卷积神经网络的敏感图像检测方法
敏感图像内容检测
双层卷积神经网络
深度学习算法
稀疏语义表示
视觉词袋
皮肤检测器
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于激光雷达点云数据生成等高线
激光雷达
点云数据
等高线
DEM
DSM
高程点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏卷积神经网络的车载激光雷达点云语义分割方法
来源期刊 汽车工程 学科
关键词 无人驾驶 点云 语义分割 稀疏卷积神经网络
年,卷(期) 2022,(1) 所属期刊栏目
研究方向 页码范围 26-35
页数 10页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2022.01.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无人驾驶
点云
语义分割
稀疏卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导