基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Automatic seizure detection is important for fast detection of the seizure because the way that the expert denotes and searches for seizure in the long signal takes time.The most common way to detect seizures automatically is to use an electroencephalogram(EEG).Many studies have used feature extraction that needs time for calculation.In this study,sliding discrete Fourier transform(SDFT)was applied for conversion to a frequency domain without using a window,which was compared with using window for feature selection.SDFT was calculated for each time series sample directly without any delay by using a simple infinite impulse response(IIR)structure.The EEG database of Bonn University was used to test the proposed method,and two cases were defined to examine a two-classifier feedforward neural network and an adaptive network-based fuzzy inference system.Results revealed that the maximum accuracies were 93%without delay and 99.8%with a one-second delay.This delay accrued because the average was taken for the results with a one-second window.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automatic seizure detection with different time delays using SDFT and time-domain feature extraction
来源期刊 生物医学研究杂志(英文版) 学科 医学
关键词
年,卷(期) 2022,(1) 所属期刊栏目 Neuroscience
研究方向 页码范围 48-57
页数 10页 分类号 R742.1
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学研究杂志(英文版)
双月刊
1674-8301
32-1810/R
16开
南京市汉中路140号
1987
eng
出版文献量(篇)
1328
总下载数(次)
0
论文1v1指导