基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提升电力系统短期负荷预测精度,提出粒子群算法优化量子加权门控循环单元神经网络模型.首先,将量子加权神经元融入门控循环单元神经网络中,构建量子加权门控循环单元神经网络预测模型,利用量子信息处理机制,提高该神经网络的非线性逼近能力和泛化能力.然后,使用全局优化能力较强的改进粒子群优化算法对所提出模型的参数进行寻优,构建权重矩阵进行负荷预测.最后,通过实际电网算例进行仿真,仿真结果表明,本文提出的粒子群优化量子加权门控循环单元神经网络预测模型的预测精度较高.
推荐文章
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于人工免疫算法的神经网络电力系统短期负荷预测
人工免疫算法
神经网络
电力系统
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子加权GRU神经网络的电力系统短期负荷预测
来源期刊 电力系统及其自动化学报 学科 工学
关键词 短期负荷预测 量子加权门控循环单元 神经网络 粒子群优化算法 电力系统
年,卷(期) 2022,(1) 所属期刊栏目 学术论文|Theoretical Research
研究方向 页码范围 1-7
页数 7页 分类号 TM715
字数 语种 中文
DOI 10.19635/j.cnki.csu-epsa.000804
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
量子加权门控循环单元
神经网络
粒子群优化算法
电力系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统及其自动化学报
月刊
1003-8930
12-1251/TM
大16开
天津市南开区天津大学电气与自动化工程学院
1989
chi
出版文献量(篇)
3958
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导