基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于缺少统一人体活动模型和相关规范,造成已有可穿戴人体活动识别技术采用的传感器类别、数量及部署位置不尽相同,并影响其推广应用.该文在分析人体活动骨架特征基础上结合人体活动力学特征,建立基于笛卡尔坐标的人体活动模型,并规范了模型中活动传感器部署位置及活动数据的归一化方法;其次,引入滑动窗口技术建立将人体活动数据转换为RGB位图的映射方法,并设计了人体活动识别卷积神经网络(HAR-CNN);最后,依据公开人体活动数据集Opportunity创建HAR-CNN实例并进行了实验测试.实验结果表明,HAR-CNN对周期性重复活动和离散性人体活动识别的F1值分别达到了90%和92%,同时算法具有良好的运行效率.
推荐文章
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术
来源期刊 电子与信息学报 学科 工学
关键词 人体活动识别 特征提取 卷积神经网络 滑动窗口 RGB位图
年,卷(期) 2022,(1) 所属期刊栏目 模式识别与智能信息处理|Pattern Recognition and Intelligent Information Processing
研究方向 页码范围 168-177
页数 10页 分类号 TN911.7|TP391
字数 语种 中文
DOI 10.11999/JEIT200942
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人体活动识别
特征提取
卷积神经网络
滑动窗口
RGB位图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导