基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承工作环境多变和样本不足导致故障诊断效果不佳的问题,提出一种多模态注意力卷积神经网络.该网络采用多个并行卷积层构建,并结合注意力机制,有效地提取了丰富的故障特征.然后提出了两种有限数据条件下的数据增强方法,解决了数据样本不足的问题.另外,将采集到的滚动轴承时域信号通过小波变换转换为时频图谱作为网络输入来提高数据质量,利用多种转频下故障数据对所提方法进行实验分析.结果 表明,该方法在变工况实验中准确率高,聚类效果明显,说明该方法能有效提高变工况下轴承故障诊断的精度,具有很好的应用价值.
推荐文章
基于MWT和CNN的滚动轴承智能复合故障诊断方法
滚动轴承
智能复合故障诊断
多小波变换
卷积神经网络
基于MSCNN与STFT的滚动轴承故障诊断研究
故障诊断
滚动轴承
多尺度卷积神经网络
短时傅里叶变换
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
使用改进残差神经网络的滚动轴承变工况故障诊断方法
故障诊断
滚动轴承
变工况
残差神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN的变工况滚动轴承故障诊断研究
来源期刊 控制工程 学科 工学
关键词 变工况轴承故障诊断 卷积神经网络 注意力机制 数据增强 小波变换
年,卷(期) 2022,(2) 所属期刊栏目 基于大数据的故障诊断与预测理论及技术(专题)
研究方向 页码范围 254-262
页数 9页 分类号 TH-17|TP183
字数 语种 中文
DOI 10.14107/j.cnki.kzgc.20210573
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变工况轴承故障诊断
卷积神经网络
注意力机制
数据增强
小波变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
论文1v1指导