基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
印刷电路板(PCB)在生产制造中由于生产工序等问题易导致电路板存在瑕疵缺陷,为提高对电路板缺陷的检测效率,提出了一种基于卷积神经网络(CNN)的电路板缺陷检测网络.该检测网络基于YOLO v4网络进行优化改造,针对于PCB制作精密、复杂,各类缺陷不易检测的难点,在优化后的网络中加入了基于细粒度空间域的长距离全局注意力机制,同时在SPP模块的基础上进行特征图重组作为各YOLO检测头的输入.通过使用长距离注意力机制通道将浅层网络提取到的特征传递到深层网络中,并采用特征图重组的方式提升特征信息丰富度,从而提高对于PCB缺陷检测的精度.经实验分析,与各类经典CNN相比,在PCB缺陷检测任务中,该算法有较大优势,整体缺陷的平均检测精度均值(mAP)达到91.40%,适用于实际生产、检测环节.
推荐文章
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
基于改进的卷积神经网络的道路井盖缺陷检测研究
井盖缺陷
卷积神经网络
激活函数
神经元
基于卷积神经网络的管道表面缺陷识别研究
缺陷识别
管道表面缺陷
机器视觉
卷积神经网络
缺陷分类
GoogleNet构造优化
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的PCB缺陷检测
来源期刊 图学学报 学科 工学
关键词 印刷电路板 深度学习 卷积神经网络 缺陷检测 注意力机制
年,卷(期) 2022,(1) 所属期刊栏目 图像处理与计算机视觉|Image Processing and Computer Vision
研究方向 页码范围 21-27
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.11996/JG.j.2095-302X.2022010021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
印刷电路板
深度学习
卷积神经网络
缺陷检测
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
图学学报
双月刊
2095-302X
10-1034/T
16开
北京海淀学院路37号中国图学学会学报编辑部
1980
chi
出版文献量(篇)
3336
总下载数(次)
7
论文1v1指导