基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像显著性对象检测领域中多尺度特征提取不充分、对象边缘模糊等问题,提出了一个端到端的基于注意力嵌入的金字塔特征以及渐进边缘优化的显著性对象检测模型.首先,设计了由多个扩张卷积构成的注意力嵌入的密集空洞金字塔模块(AEDAPM),在不减小特征分辨率的前提下,得到丰富且有效的多级多尺度特征;其次,为了解决显著性对象边缘模糊的问题,提出了渐进边缘优化模块(SE OM),在特征恢复分辨率的过程中逐步补充空间细节信息,使模型检测出的显著对象能够拥有清晰的边缘轮廓.在DUTS-TE、ECSSD、DUT-OMRON、HKU-IS、PASCAL-S 5个显著性领域公开的数据集上与其他12种已有的先进方法在3个常用指标下进行了比较,结果表明:所提方法能够得到更加准确、边缘更加清晰的显著性结果.此外,自对比实验也充分证明了提出的注意力嵌入的密集空洞金字塔模块和渐进边缘优化模块的有效性.
推荐文章
基于金字塔特征的核相关滤波跟踪算法
视觉跟踪
核相关滤波跟踪
金字塔特征
HOG特征
基于小波图像金字塔的工件目标检测与定位研究
工件目标检测
图像匹配
目标定位
图像金字塔
相关匹配
检测实验
视觉显著性检测与金字塔变换相结合的图像融合
图像融合
金字塔变换
显著性检测
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于金字塔特征与边缘优化的显著性对象检测
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 显著性对象检测 多尺度特征提取 全卷积神经网络 边缘特征提取 深度学习
年,卷(期) 2022,(2) 所属期刊栏目 智能信息|Intelligent Information
研究方向 页码范围 35-43
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.13705/j.issn.1671-6833.2022.02.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性对象检测
多尺度特征提取
全卷积神经网络
边缘特征提取
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导