基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风能的间歇性、波动性和随机性会对电网造成巨大冲击,准确的风电功率预测对于制定发电计划和统筹调度至关重要,因此提出一种基于进化多目标优化的选择性异质集成(evolutionary multi-objective optimization based selection heterogeneous ensemble,EMOSHeE)风电功率预测方法.首先,结合K近邻和K均值聚类的优势构建多样性局部区域并通过概率分析剔除冗余状态,从而获得涵盖不同波动状态下的样本子集.其次,在每个局部区域上利用偏最小二乘、支持向量回归和高斯过程回归3种方法分别建立预测模型,得到一个具有较高多样性的异质模型库.随后,利用进化多目标优化算法对异质模型库进行集成修剪,从而获得一组较小规模、多样且高性能的异质模型集.最后,引入简单平均策略实现修剪后的异质模型集的融合并获得最终的预测结果.利用云南省和国外某风电场的真实数据验证了所提方法的有效性.
推荐文章
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
基于EEMD-IGSA-LSSVM的超短期风电功率预测?
集合经验模态分解
风功率预测
最小二乘向量机
改进引力搜索算法
指数径向基核函数
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部学习和多目标优化的选择性异质集成超短期风电功率预测方法
来源期刊 电网技术 学科 工学
关键词 风电功率预测 集成学习 局部学习 集成修剪 进化多目标优化 异质集成
年,卷(期) 2022,(2) 所属期刊栏目 电网友好型风电控制技术|Grid-friendly Wind Power Control Technology
研究方向 页码范围 568-577
页数 10页 分类号 TM614
字数 语种 中文
DOI 10.13335/j.1000-3673.pst.2021.0979
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电功率预测
集成学习
局部学习
集成修剪
进化多目标优化
异质集成
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电网技术
月刊
1000-3673
11-2410/TM
大16开
北京清河小营东路15号中国电力科学研究院内
82-604
1957
chi
出版文献量(篇)
9975
总下载数(次)
39
论文1v1指导