基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对单阶段多边框检测(SSD)算法中存在目标定位不准确和小目标检测精度不高的问题,提出基于优化预测定位的单阶段目标检测算法EL-SSD.通过双向加权特征金字塔将原SSD预测特征图特征融合,对输出特征图进行特征位置信息解码后进行特征通道权重再分配,提升了特征语义信息,捕获了跨通道位置信息.通过构建分类置信度及额外的定位置信度级联聚类对预测框进行非极大值抑制,提高在检测阶段对选择目标的定位精度.实验结果表明,EL-SSD算法在PASCAL VOC2007上的平均检测均值达到79.8%,比原SSD算法提高了2.6%.在COCO数据集上的精度达到29.4%,比原SSD算法提高了3.5%,在检测图片上的目标定位效果及小目标检测效果明显优于SSD,适用于需要高定位性能的实时应用场景.
推荐文章
基于SIFT特征与预测的运动目标检测算法
目标检测
SIFT特征
旋转参数模型
动态场景
基于深度学习的单阶段目标检测算法研究综述
深度学习
单阶段目标检测算法
特征提取
特征融合
anchor
损失函数
人工智能
基于多向梯度背景预测的红外目标检测算法
背景预测
多向梯度
阈值
弱小目标
基于蚁群优化的多目标社区检测算法
复杂网络
社区检测
蚁群优化算法
多目标优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化预测定位的单阶段目标检测算法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 目标检测 单阶段多边框检测算法 特征融合 非极大值抑制 定位置信度
年,卷(期) 2022,(4) 所属期刊栏目 计算机技术、信息工程|Computer Technology, Information Engineering
研究方向 页码范围 783-794
页数 12页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.04.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
单阶段多边框检测算法
特征融合
非极大值抑制
定位置信度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导