基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有基于视频整体时间结构建模的行为识别方法中, 存在的时间噪声信息和歧义信息干扰现象, 从而引起行为类别识别错误的问题, 提出一种新型的Grenander推理优化下时间图模型(temporal graph model with Grenander inference, TGM-GI). 首先, 构建3D CNN-LSTM模块, 其中3D CNN用于行为的动态特征提取, LSTM模块用于该特征的时间依赖关系优化. 其次, 在深度模块基础上, 利用Grenander理论构建了行为识别的时间图模型,并设计了两个模块分别处理慢行为时间冗余和异常行为干扰问题, 实现了时间噪声抑制下的时间结构提议. 随后,设计融合特征约束和语义约束的Grenander测度, 并提出一种时序增量形式的Viterbi算法, 修正了行为时间模式中的歧义信息. 最后, 采用基于动态时间规划的模式匹配方法, 完成了基于时间模式的行为识别任务. 在UCF101和Olympic Sports两个公认数据集上, 与现有多种基于深度学习的行为识别方法进行比较, 该方法获得了最好的行为识别正确率. 该方法优于基准的3D CNN-LSTM方法, 在UCF101数据集上识别精度提高6.41%, 在Olympic Sports数据集上识别精度提高5.67%.
推荐文章
采用约束蚁群优化的贝叶斯网结构学习算法
贝叶斯网络
约束蚁群优化算法
增边规则
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
一类基于蚁群优化的贝叶斯置信网结构学习策略及性能分析
优化算法
蚁群优化算法
贝叶斯置信网
结构学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Grenander时间结构学习与推理优化下的行为识别
来源期刊 软件学报 学科 工学
关键词 行为识别 时间模式 Grenander时间图模型 深度模型 动态时间规划
年,卷(期) 2022,(5) 所属期刊栏目 模式识别与人工智能|PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
研究方向 页码范围 1865-1879
页数 15页 分类号 TP181
字数 语种 中文
DOI 10.13328/j.cnki.jos.006202
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为识别
时间模式
Grenander时间图模型
深度模型
动态时间规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导