基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视网膜血管的形态和结构一直是高血压、冠心病、糖尿病等疾病的重要诊断指标之一,其检测和分割具有十分重要的意义.为了解决视网膜血管分割中,血管末梢缺失和细小血管断裂的问题,提出了一种基于U-Net改进模型的多尺度分割方法,通过在编码阶段和解码阶段之间采用增加卷积块的方式来保持对不同尺度下的特征提取,同时对增加的卷积块采用密集连接的方式解决由于网络加深带来的浅层特征缺失和梯度消失问题,从而增强模型的特征提取能力并提高分割性能.此外,采用Dice损失函数解决数据集中正负样本不均衡的问题.实验采用CHASE_DB1和DRIVE两个数据集进行训练和测试,通过与U-net、Residual U-net、Ladder-Net以及R2U-Net的对比表明,由于保留了多尺度的细节信息,该方法取得了更好的分割效果.实验证明,该方法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管.
推荐文章
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于PST和多尺度高斯滤波的视网膜血管的分割
视网膜血管
相位拉伸变换
多尺度
血管分割
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于双向循环U-Net模型的脑卒中病灶分割方法
深度学习
脑卒中病灶分割
CGRU;
U-Net
双向特征融合
多视面融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于U-Net的多尺度视网膜血管分割方法
来源期刊 计算机技术与发展 学科 工学
关键词 视网膜血管 U-Net 卷积神经网络 图像分割 密集连接 多尺度策略
年,卷(期) 2022,(4) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 140-145
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.04.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视网膜血管
U-Net
卷积神经网络
图像分割
密集连接
多尺度策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导