基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确的交通流预测能够为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题.近年来,相关研究利用图卷积神经网络(GCN)处理非欧式空间结构的特点,对来自复杂路网的交通流数据进行空间相关性建模.然而,现有基于图卷积的交通流预测方法未能充分考虑空间相关性的有向性和动态性这两个重要特点.考虑到动态交通流呈现出由固定道路结构约束的稳定空间相关性和受交通环境变化影响的动态空间相关性,提出了一种用于动态交通流预测的端到端双流图卷积网络(TSGCN).首先,将实时交通流数据分解为具有不同空间相关性的稳定分量和动态分量.其中,稳定分量表示受路网约束和交通习惯影响的部分,动态分量则代表因交通状况变化(如交通拥堵和恶劣天气)引起的波动.然后,通过双流图卷积层提取稳定和动态的空间相关性.最后,使用参数化跳过连接方法来融合时空相关性以获得最终的预测结果.在两个公开的真实交通数据集上的实验结果表明,提出的模型优于对比的交通流预测方法.
推荐文章
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
面向动态导航系统的短时交通流SVR预测方法
动态导航
智能预测
支持向量回归
短时交通流
相空间重构
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
基于神经网络的城市交通流预测研究
神经网络
城市交通
交通流
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向动态交通流预测的双流图卷积网络
来源期刊 计算机科学与探索 学科 工学
关键词 交通流预测 图卷积神经网络(GCN) 时空相关性
年,卷(期) 2022,(2) 所属期刊栏目 人工智能|Artificial Intelligence
研究方向 页码范围 384-394
页数 11页 分类号 TP311
字数 语种 中文
DOI 10.3778/j.issn.1673-9418.2009097
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
图卷积神经网络(GCN)
时空相关性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导