原文服务方: 计算机测量与控制       
摘要:
交通流预测是智能交通系统(ITS)的核心,其中时空特性是最主要的特征;由于不同道路之间存在复杂的空间相关性和时间依赖性,因此交通流预测成为一项具有挑战性的任务;目前,基于图卷积神经网络的预测方法在网络局部以及整体的特征感知和提取方面,仍存在优化空间;为了解决以上问题,提出了一种基于图神经网络的优化模型(DMCRNN),该模型以DCRNN为基准模型,利用相互学习策略对其进行优化;在训练过程中,两个DCRNN网络之间相互学习、相互指导,以此来增强每个网络的特征学习能力;在METR-LA和PEMS-BAY两个真实数据集上验证优化策略的有效性;结果表明,经过优化后的模型预测误差显著降低,在两个数据集上一小时的MAE与DCRNN相比分别降低了0.15和0.12,即相互学习优化策略具有较好的性能。
推荐文章
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
短时交通流预测方法研究
相关分析
支持向量机
交通流预测
智能交通
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相互学习的短时交通流预测研究
来源期刊 计算机测量与控制 学科
关键词 交通流预测 时空特性 图神经网络 知识蒸馏 相互学习
年,卷(期) 2024,(4) 所属期刊栏目
研究方向 页码范围 166-173
页数 8页 分类号
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2024.04.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
时空特性
图神经网络
知识蒸馏
相互学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
论文1v1指导