基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对交通流数据的时间相关性和非线性等特点,现有预测方法未能充分获取交通流的本质特征,提出了一种基于深度学习的短时交通流量预测方法.该方法结合长短时记忆神经网络(LSTM)和支持向量机回归(SVR)作为预测模型,利用长短时记忆神经网络模型进行获取特征,用获取的特征训练支持向量回归进行交通流量的预测,比较了与其它模型的预测效果,真实数据集的结果表明,该模型有较高的预测精度.
推荐文章
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
基于差分数据图和深度学习的短时交通流预测
交通流量预测
卷积神经网络
支持向量回归
数据差分
交通数据图
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的短时交通流量预测
来源期刊 青岛大学学报(自然科学版) 学科 交通运输
关键词 深度学习 短时交通流预测 LSTM 特征 SVR
年,卷(期) 2017,(4) 所属期刊栏目 信息工程
研究方向 页码范围 65-69
页数 5页 分类号 U491.2
字数 3433字 语种 中文
DOI 10.3969/j.issn.1006-1037.2017.11.13
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙仁诚 青岛大学计算机科学技术学院 56 250 10.0 14.0
2 乔松林 青岛大学计算机科学技术学院 2 20 2.0 2.0
3 刘吉 青岛大学计算机科学技术学院 2 20 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (137)
参考文献  (12)
节点文献
引证文献  (15)
同被引文献  (14)
二级引证文献  (1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(8)
  • 引证文献(8)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度学习
短时交通流预测
LSTM
特征
SVR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
青岛大学学报(自然科学版)
季刊
1006-1037
37-1245/N
16开
青岛市宁夏路308号
1988
chi
出版文献量(篇)
1805
总下载数(次)
12
总被引数(次)
6176
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导