基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多种机器学习和深度学习的模型和算法应用于短时交通流量预测,但是,大多数模型尤其是深度学习模型对训练样本的数量要求较高.为此,提出了一种基于数据扩展的短时交通流量预测方法,该方法基于自编码神经网络分别结合长短时记忆神经网络(LSTM)和支持向量机回归(SVR)构建预测模型,该模型利用自编码神经网络扩展的数据分别训练长短时记忆神经网络和支持向量回归进行交通流量的预测,结果表明,所提出的预测模型具有较高的精度和较好的泛化能力.
推荐文章
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于差分数据图和深度学习的短时交通流预测
交通流量预测
卷积神经网络
支持向量回归
数据差分
交通数据图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据扩展的短时交通流量预测
来源期刊 青岛大学学报(自然科学版) 学科 交通运输
关键词 数据扩展 短时交通流预测 自编码 LSTM SVR
年,卷(期) 2019,(2) 所属期刊栏目 信息工程
研究方向 页码范围 73-78
页数 6页 分类号 U491.1
字数 4419字 语种 中文
DOI 10.3969/j.issn.1006-1037.2019.02.13
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵峰晶 青岛大学计算机科学技术学院 54 396 11.0 18.0
2 孙仁诚 青岛大学计算机科学技术学院 56 250 10.0 14.0
3 魏庆东 青岛大学计算机科学技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (3)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据扩展
短时交通流预测
自编码
LSTM
SVR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
青岛大学学报(自然科学版)
季刊
1006-1037
37-1245/N
16开
青岛市宁夏路308号
1988
chi
出版文献量(篇)
1805
总下载数(次)
12
总被引数(次)
6176
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导