基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多目标优化算法的主要目标是实现好的多样性和收敛性.传统的高维多目标优化算法,当目标维数增加时,选择方式难以平衡种群的收敛性与多样性.对此,提出一个基于指标和自适应边界选择的高维多目标优化算法.在环境选择中,首先计算种群中两两个体的指标Iε(x,y)作为第一选择标准;其次,提出一种自适应边界选择策略,利用种群进化信息对超平面系数进行模糊预测;再次,近似计算待选个体到超平面的范式距离作为第二选择标准;最后,将所提出算法与5种代表性的高维多目标算法进行比较,实验结果表明,所提出算法在处理复杂Pareto前沿高维多目标优化问题时,能在平衡收敛性与多样性的同时,更好地维护多样性.
推荐文章
一维下料的基于贪心策略的多目标自适应粒子群算法优化
一维下料
粒子群算法
算法优化
贪心策略
自适应策略
仿真实验
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
基于量子行为特性粒子群和自适应网格的多目标优化算法
多目标优化
量子行为特性粒子群优化
高斯变异
自适应网格
Pareto最优解
改进的自适应多目标粒子群算法
多目标优化
粒子群优化
帕累托最优
约束控制
边界处理
全局最优选择
自适应控制
最大传输能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于指标和自适应边界选择的高维多目标优化算法
来源期刊 控制与决策 学科 工学
关键词 指标 模糊预测 超平面 自适应边界选择 收敛性 多样性
年,卷(期) 2022,(5) 所属期刊栏目 论文与报告|Papers and Reports
研究方向 页码范围 1183-1194
页数 12页 分类号 TP273
字数 语种 中文
DOI 10.13195/j.kzyjc.2020.1518
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
指标
模糊预测
超平面
自适应边界选择
收敛性
多样性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制与决策
月刊
1001-0920
21-1124/TP
大16开
沈阳东北大学125信箱
1986
chi
出版文献量(篇)
7031
总下载数(次)
20
总被引数(次)
141238
论文1v1指导